Power quality disturbances classification based on S-transform and probabilistic neural network

نویسندگان

  • Nantian Huang
  • Dianguo Xu
  • Xiaosheng Liu
  • Lin Lin
چکیده

Classifying power quality (PQ) disturbances is one of the most important issues for power quality control. A novel high-performance classification system based on the S-transform and a probabilistic neural network (PNN) is proposed. The original power quality signals are analysed by the S-transform and processed into a complex matrix named the S-matrix. Eighteen types of time–frequency features are extracted from the S-matrix. Then, after comparing the classification abilities of different feature combinations, a selected subset with 2 features is used as the input vector of the PNN. Finally, the PNN is trained and tested with simulated samples. By reducing the number of features in the PNN’s input vector, the new classification system reduces the time required for learning and the computational costs associated with the features and the PNN’s memory space. The simulation results show that 8 types of PQ disturbance signals with 2 types of complex disturbances were classified precisely and that the new PNN-based approach more accurately classified PQ disturbances compared to back propagation neural network (BPNN) and radial basis function neural network (RBFNN) approaches. & 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network

Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...

متن کامل

Detection and Classification of Power Quality Disturbances Using Wavelet Transforms and Probablistic Neural Networks Aneeta

The use of sensitive electronic equipments is on the rise lately and power quality studies have progressed a lot. Detection and classification of power quality signals is of greater importance both in case of Power quality studies and denoising. This paper proposes a detection and classification technique for several power quality disturbances, by introspecting the energy of the distorted signa...

متن کامل

Classification of Power Quality Disturbances Using Wavelet Transform and S-transform Based Artificial Neural Network

This paper presents features that characterize power quality disturbances from recorded voltage and current signals using wavelet transformation and S-transform analysis. The disturbance of interest includes sag, swell, transient and harmonics. A 25kv distribution network has been simulated using matlab software. The feature extraction has been done using wavelet transformation and S-transform,...

متن کامل

Power Quality Disturbances Feature Selection and Recognition Using Optimal Multi-Resolution Fast S-Transform and CART Algorithm

Abstract: In order to improve the recognition accuracy and efficiency of power quality disturbances (PQD) in microgrids, a novel PQD feature selection and recognition method based on optimal multi-resolution fast S-transform (OMFST) and classification and regression tree (CART) algorithm is proposed. Firstly, OMFST is carried out according to the frequency domain characteristic of disturbance s...

متن کامل

Wavelet Transform for Classification of Voltage Sag Causes using Probabilistic Neural Network

This paper presents an algorithm to detect and classify voltage sag causes based on Wavelet Transform (WT) and Probabilistic Neural Network (PNN). A technique is required which is capable of extracting both time-frequency information to identify the causes which contribute to power quality disturbances. Wavelet transform based on multiresolution analysis is used to extract the features from the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 98  شماره 

صفحات  -

تاریخ انتشار 2012